Support Surface Testing, How to Use What We Get

Evan Call, MS, CSM (NRM)

Disclosures:

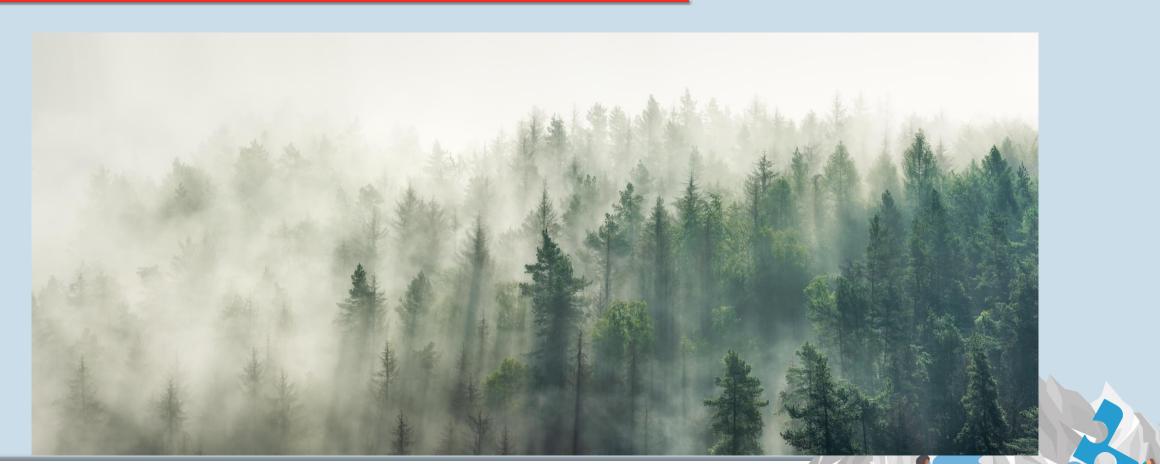
Operate a test lab, performing tests on Support Surfaces and other medical devices.

Advisor to Molnlycke on topics not related to today's presentation

Speaker Urgo Med on topics not related to today's presentation

Support Surface Testing with Standardized Methods

S3I Terms and Definitions were now 9 years old


Should we find a different reference so it is "NEW Science"

Standards are Voted on for Renewal every 3 years.

They are never more than 3 years old

What Do We Have?

Six Elements and Their Control

Pressure- Immersion and Envelopment- spread over greater area Friction- Sheet, chuck, overlay, moisture - Balance positioning with release Shear- HOB, Type of Surface, Friction- Reduce sliding and release shear Heat- Type of surface, turn schedule- Skin off the surface to breath Moisture- Surface selection, power – moisture reduction, risk reduction Nursing Practices-Interacts with all features-Provides all the interventions

Six Elements and Their Control

Pressure- Immersion and Envelopment- spread over greater area Friction- Sheet, chuck, overlay, moisture - Balance positioning with release Shear- HOB, Type of Surface, Friction- Reduce sliding and release shear Heat- Type of surface, turn schedule- Skin off the surface to breath Moisture- Surface selection, power – moisture reduction, risk reduction Nursing Practices- Single Greatest Impact

ANSI/RESNA SS-1:2019

Contents

Scope of Vol	ume 1viii
Section 1	Vocabulary1.1
Section 2	Standard Protocol for Measuring Immersion in: Full Body Support Surfaces2.1
Section 3	Standard Protocol for Measuring Heat and Water Vapor Dissipation Characteristics of Full Body Support Surfaces – Body Analog Method
 Section 4	Standard Protocol for Measuring Heat and Water Vapor Dissipation Characteristics of Full Body Support Surfaces – Sweating Guarded Hot Plate (SGHP) Method4.1
Section 5	Support Surface Horizontal Stiffness Test
Section 6	Envelopment and Immersion – Hemispherical Indenter Test
Section 7	Envelopment with Dual Semispherical Indenter Test7.1
Section 8	Standard Protocol for Measuring Water Vapor Dissipation Characteristics of Full Body Support Surfaces – Heated Water Bladder Method

7 Tests toMeasure the6 Elements

© 2019 RESNA- All rights reserved

vii

Section 1


Vocabulary

- Terms and definitions to clarify and standardize communication and specification
- Available at:

https://cdn.ymaws.com/npiap.com/resource/resmgr/s3i/S3I poster Term an d Defs po.pdf

 Also available in the standard from: <u>https://webstore.ansi.org/Search/Find?in=1&st=ANSI%2FRESNA+SS-1%3A2019</u>

Using the Standards: Specialty Support Surface Can be Defined by

CATEGORIES

Reactive support surface

Active support surface

Integrated bed system

Non-Powered

Powered

overlay

FEATURES

Air fluidized Alternating pressure Lateral rotation Low Air Loss

Zone

Multi-Zoned surface

Immersion and Envelopment

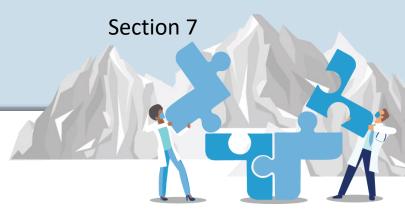
Section 2

- Standard Protocol for Measuring Immersion in Full Body Support Surfaces
- Section 6
 - Envelopment and Immersion Hemispherical Indenter Test
- Section 7
 Envelopment with Dual Semispherical Indenter Test

Association for the Advancement of Wound Care* 2022 Annual Conference Technology in Wound Care

RESNA: SS-1 Requirements and Test Methods for Full Body Support Surfaces

Immersion and Envelopment


Association for the Advancement of Wound Care®

Section 2

2022 Annual Conference Technology in Wound Care Section 6

Why Three Tests??

Support Surfaces Have Different Functions and Intended Uses

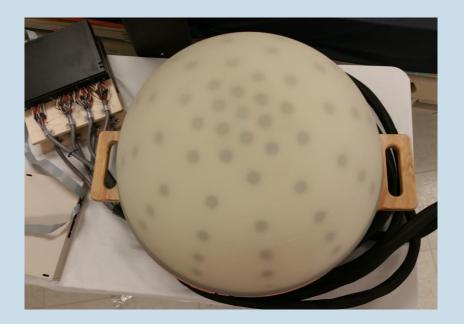
No Single Test Measures all the features

Immersion and Envelopment are the Physical Characteristics that define "PRESSURE"

- How Far the patient sinks in
 - Defines how much surface is potentially available
- How well the surface Envelopes
 - Defines how well force can be distributed to the available surface
- Only 1/3 of surfaces tested register a value in the High Challenge test

Section 2: Immersion (only immersion)

High Resolution


Mass and Height of Average Male

BOUNDRIES:

- Thickness of the surface
- Material of construction
 - Foam 50-60%
 - Air 80+%
- Friction reduces immersion
- Anything on the surface impacts immersion
- Surfaces react to chucks, sheets, overlays differently

Section 6 Immersion and Envelopment

Immersion (high resolution) and Envelopment Sensor vertical spacing is ¾", horizontal varies Shows envelopment More than actual pressure Pressure by sensor row , more rows is better

BOUNDRYS

Thickness and material of construction of surface Friction and devices placed on surface impact Sensor distribution Senses to 20" depth Pelvic region only

Section 7: Immersion and Envelopment High Challenge

the Advancemen of Wound Care®

2022 Annual Conference Technology in Wound Care Immersion (High Resolution) and Envelopment Represents atrophied pelvic region Highly Significant Cleft Challenge

BOUNDRYS

- Thickness and material of construction of surface
- Sensor distribution
- Measures highest enveloping surfaces
- Segmented and elastic materials of construction
- Fluid like materials

How Do I use Immersion and Envelopment?

In depth support surface selection study published by Mayo Clinic

- Nursing practices had a greater impact on pressure redistribution through turning protocol than the support surface immersion and envelopment did.
 - Head of bed management
- Moisture management practices by nurses were more impactful than microclimate management by bed
 - Incontinence care
 - Sweat
- Proper positioning and repositioning protects sacrum from shear more than the accommodating surface
 - Horizontal stiffness test
 - Repositioning schedule
 - Knee gatch
 - Positioning aids

How Do I Use Immersion and Envelopment?

IMMOBILE SPINA BIFIDA CLOSURE PATIENT

High Immersion

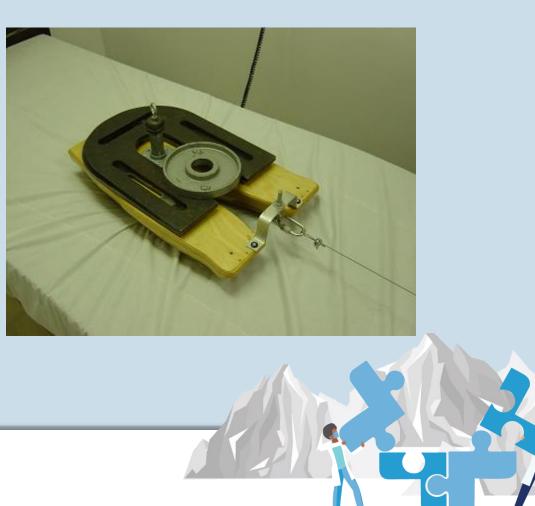
• Highest number from Section 2, 6 or 7

High Envelopment

- Highest number of sensors with load in Section 6
- Highest readings on sensors 5 and 6 Section 7

MOBILIZATION ORTHOPEDIC JOINT REPLACEMENT PATIENT

Medium to Low Immersion


- Stability for bed edge mobility
- Low immersion for in bed PT
- Low to Medium Envelopment
- Low or no readings on sensors 5 and 6 Section 7

Section 5: Horizontal Stiffness

Section 5: Horizontal Stiffness

Resistance to patient sliding

Used to simulate movement after elevation of the head of bed

BOUNDRIES

- Visco foam, high resistance
- High immersion air, low resistance
- Believed to be predictive of DTI

Great Point to Consider

- New study coming to a close at University of Pittsburg.
- Dr. Dave Brienza, Associate Dean of Research and Team, Patricia Karg etc.
- Clinical study looking at pressure injury rates between different support surfaces in a 3 year study
- We are watching with great anticipation and interest
- High quality of care hospitals, mask the potential of measuring surface impact on injury rates

How Do I use Horizontal Stiffness

CATAPLEXY

High horizontal stiffness

 May assist in preventing sliding or bunching in bed.

Low horizontal stiffness

- May assist in distribution of forces
- Consider Lower HOB
- Consider higher envelopment

Body type may change considerations

POTENTIAL SHEAR ENVIRONMENTS

Continuous lateral rotation

Rotational Beds

Reverse Trendelenburg

High Head of Bed

Microclimate

Why Three Tests

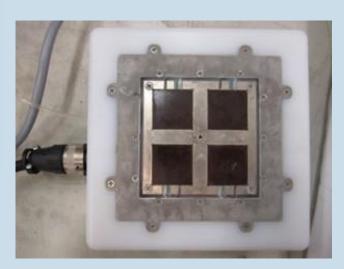
Body Analog

- Measures the accumulation of heat and humidity
- Reports Temperature in °C
- Reports Humidity in relative humidity
- These two values are highly cognitive to the typical user.
 - We all know what high humidity and high temperature feel like
- We report gm moisture removed per trial (pelvic region)

Sweating Guarded Hot Plate

- Measures the heat movement through flux sensors when dry and when wet
- Uses this to calculate the potential removal of moisture in normal operation
- Reports calculated gm/m²/hr of potential moisture removal
- Reports measured heat removal when both wet and dry J/m²/hr

Heated Bladder Method


- Measures the actual moisture removed in Grams, gm/m²/hr
- Measures continuous removal over 3 hours
- We add heat accumulation as temperature in C°
- Only actual water removal in gm of the 3

Sweating Guarded Hot Plate Microclimate Test

In use

And and a second s

Surface contact side

Data Logger and controller

Sweating Guarded Hot Plate Boundaries

Environment where surface is used

Moisture absorption of the cover fabric

Moisture wicking of the cover fabricWool sock effect, still warm when wet

Sensitive to the insulation R value of the bed

Sensitive to the heat conduction Q value

Appears be skewed by the Dyne value

ALL THIS JUST MEANS THE WOOL SOCK EFFECT

Body Analog Microclimate Test

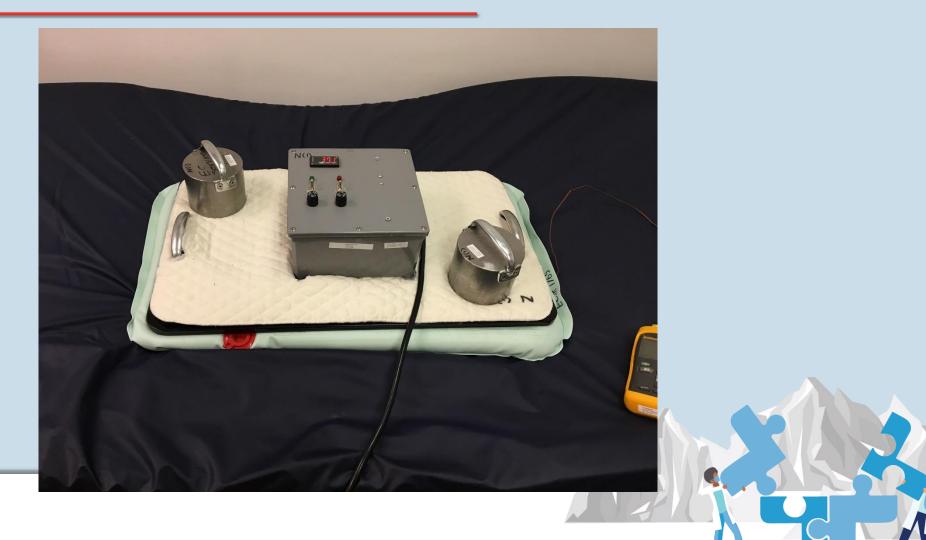
Body Analog Boundries

Temperature and humidity in the room where support surface is in use

Support surface can not drop humidity below ambient

Temperature in the presence of moisture can be lowered slightly below due to evaporation, but effect is minimal

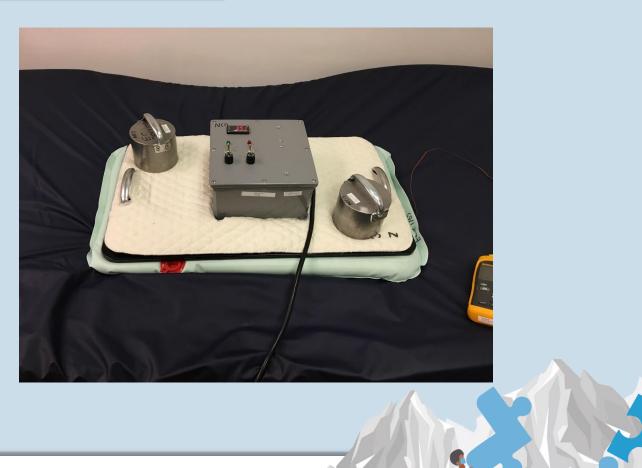
Exposed skin in air is approximately 28°C (22°C to 34°c in our study)


Electronic Controls of surface and number of blankets and absorbent pads govern performance

Some surfaces heat, I have only seen prototypes of cooling surfaces

Heated Water Bladder Test

Heated Water Bladder Boundaries


Hydrophilic nature of fabric

Water Delivery rate of the fixture

Measures and reports amount of water removed from fixture.

Direct measure is desirable

Simple measurement

Examples of the Numbers

Description	Distance	Moisture Removal (gm^2/hr)	Heat Removal W/m^2	Peak Temp (°C)	Peak RH (%)	
	High is Good	High is Good	High may be good			
LAL 1	87	93	55	28	63	
Air Fluidized*	80-120	400+	40-80	28-35	45-65	
LAL and AP	57	5	15	33	83	
AP	55	9	15	31	72	
Air	55	17	30	35	80	
Foam	50	14	. 15	33	75	
Visco Foam 1	61	44	51	32	81	
 Neg Pressure Overlay	50-70	320+	15-60	28-33	45-75	<

Association for the Advancement of Wound Care* 2022 Annual Conference Technology in Wound Care

* Powered surfaces may have adjustable controls to create different environments

S3I Support Surface Decision Guidance Document **Data provided by manufacturers is proprietary**

o Other__

1. Define patient population for bed purchase

- Emergency Department
 Free Section Unit
 Intensive Care Unit
 Long Term Acute Care Hospital
- Medical Unit
 Skilled Nursing Facility Nursing Home

2. Define Support Surface Category

0	Foam - zoned	0	Low Air Loss	0	Reactive Air Surface
0	Foam - viscoelastic	0	Alternating Pressure	0	Other
0	Gel	0	Air Fluidized		

3. Product Comparison - Information obtained from Manufacturers

Utilize "Guidance on Interpretation of Performance Standards for Support Surfaces" to determine most relevant methods. Not every test method applies to every surface.

Note: Section 1 of the Standards is Terms and Definitions, no performance results.

			1.44	nce results.		
	Support Surface A	Support Surface B	Support Surface C	Support Surface D	Support Surface E	Considerations to take into account, based on results and patient population/setting.
Support Surface Name						
Pressure Redistribution Category	All thre	ee methods ass	ess pressure red	listribution perfe	ormance but the	test report different metrics
IMMERSION (Section 2)		50				
Calculated Immersion						
ENVELOPMENT and IMMERSION	I: HEMISPHER	ICAL INDENTE	R (Section 6)			
Immersion						
% Envelopment						
Peak Pressure						
Peak Pressure/ Immersion						
Peak Pressure/Mean Pressure						
ENVELOPMENT: DUAL SEMISHE	RICALINDENT	ER (Section 7)				
Avg immersion depth						
Avg pressures (levels 1 & 4)						
Shear Category						
HORIZONTAL STIFFNESS (Section 5	5)					
0 (Initial Measurement)						
60 seconds						
120 seconds						
180 seconds						
240 seconds Screenshot						

Selection Guidance 1 Available at NPIAP.com

Selection Guidance 2

	Support Surface A	Support Surface B	Support Surface C	Support Surface D	Support Surface E	Considerations to take into account, based on results and patient population/setting.				
Microclimate Management		All three method	ds assess microc	limate performa	ance but the test	report different metrics				
ODYANALOG (Section	3)									
Relative 60n Humidity	nin									
120	min									
180	min									
Temperature 60n	nin									
120	min									
180	min									
L L L L L L L L L L L L L L L L L L L	HOT PLATE (Section	4)								
Dry Heat Flux									\mathbf{V}	
Wet Heat Flux										
Evaporative Capaci	ity									
L EATED WATER BLADD	DER METHOD (Secti	on 8)								
30 minutes										
60 minutes										
90 minutes										
120 minutes										
150 minutes										
180 minutes										
Overall Facility Rank	king									

Interpretation Aids Available at NPIAP.com

enormance rest	Performance	Performance Test	Interpretation of	Guidance
	Measures		Results	
This test provides one measure of pressure redistribution through mmersion into the support surface. Increased contact area evaluated by mmersion and envelopment) disperses the individual's weight and redistributes the pressure over a broader	Paidated Output Calculated Immersion (depth) (mm) e	Immersion Intent of method: This test provides one measure of pressure redistribution through immersion into the support surface. Increased contact area (evaluated by immersion and envelopment) disperses the individual's weight and redistributes the pressure over a broader area.	Products that are less stiff/firm will typically have higher immersion. Conversely, products that are more stiff/firm will typically have lower immersion values. This value is limited to the thickness of the support surface.	Significance of high and low measurements: Higher levels of immersion provide opportunities for increased pressure redistribution. <u>With excessive immersion:</u> • Patients may feel like they are in a hole. • Bottoming out may occur. • Clinicians may find it difficult to reposition patient. <u>With limited immersion:</u> • Patients may feel the surface is hard and uncomfortable. • Less potential for pressure redistribution.

(4) Compile a chart with the data for Evaluation

Low Air Loss Mattress Comparisons For an ICU *These are simulated results and are not from specific products

Mattress Type	А	В	С	D	
Surface Height	7"	7"	12"	6"	
	Performanc	e Character	istics		
Immersion	52%	47%	50%	20%	
Envelopment (Peak Pressure)	127 mmHg	140 mmHg	138 mmHg	102 mmHg	
Horizontal Stiffness	30N	50N	40N	40N	
Sweaty Guarded Hotplate (Evaporative Capacity)	20 g/m2/hr	20 g/m2/hr	30 g/m2/hr	N/A	
Body Analog	70%	75%	80%	50%	
Heated Water Bladder Method	35 g/m2/hr	35 g/m2/hr	38 g/m2/hr	N/A	
	Cost & O	verall Rank	ing		
Cost	\$2,500	\$1,500	\$7,000	\$1,000	
	Based	l upon MICROC	CLIMATE as a p	oriority	
Overall Ranking	3	2	1	4	
	Based upon I	MMERSION &	ENVELOPMEN	IT as a priority	
Overall Ranking	1	3	2	4	

Association for the Advancement

Summarize Results in Decision Making tool

2022 Annual Confi Support Surface Selection Steps: Using Standards to Choose Wisely

Technology in Woun Clinical Translation Small Working Group Members, Support Surface Standards Initiative, National Pressure Injury Advisory Panel

Mattress Replacement Project: Putting the S3I Testing Protocols into Practice

Beth Sievers, APRN, CNS, CWCN, Evan Call, MS, CSM, Therese M. Jacobson, DNP, APRN, CNS, CWOCN, Julie Moenck, MBA, PMP, Gina Rohlik, APRN, CNS and Ann N. Tescher, PhD, APRN, CNS, CCRN, CWCN, FCCM

Mayo Clinic, Rochester, MN

Introduction	Aim	R	esults			Testing Apparatus for Measuring	Conclusions
In 2015, a large Midwestern Academic Medical Center needed to replace aging mattresses and bedframes. The Clinical Nurse Specialist (CNS), tasked with leading the institution's mattress replacement project, proposed using the Support Surface Standards Initiative (S3I) and British testing protocol	The purpose of the project was to use the best available evidence to objectively evaluate support surfaces as part of pressure injury prevention efforts.	The results from the mattre presented in a table and th each other. The lower the ra surface would meet the pat table for an example.	e surfaces w anking, the l	ere ranked better able	against the	Initiality	The results of standardized support surface testing were highly influential in selecting mattresses for general care and ICU; however, they were not used in isolation. Though the process seemed arduous at times, the team members gained knowledge and
results to inform the decision making process.	Methods		able				insight in surface selection which can be incorporated into future purchase
	The following information was shared with an independent testing lab (EC Service, Corp.) to	Mattress	A	в	с	100	and rental options.
	help determine which surfaces would benefit the patient populations cared for at our tertiary	Hospital Area	General Care	General Care	General Care	Call, 2017	
	medical center. The types of information	Max Temp (°C)	2	2	4	Gan, 2017	
	included:	Temp Diff (°C)	1	2	4	Testing Apparatus for Measuring	
Literature Review	ICU and General Care patient	Max RH (%)	3	1	4	Heat and Water Vapor	
S3I was founded by the National Pressure	characteristics	Relative Humidity Diff (%)	2	3	4		References
Ulcer Advisory Panel and is now the official	 Patient care skin protection related 	Evaporative Capacity (gm^2/hr)	3	1	4		的 时间的时候在"这个学习
testing standards body for therapeutic support	products	Moisture Removal (W/m^2)	2	3	1		Stone, A., Brienza, D., Call, E., Fontaine, R., Goldberg, M., Hong, K.Z., Jordan,
surfaces. In 2014, S3I for the first time published mattress testing protocols making	 Nursing care guidelines, procedures, 	Immersion (mm)	4	1	3		R., Lachenbruch, C., LaFleche, P.,
it possible for hospitals to request testing	& algorithms	Peak Temp (°C)	3	2	4	THE OWNER OF TAXABLE PARTY.	Sylvia, C. (2015). Standardizing support
results from manufacturers that would allow accurate comparison of similar surfaces. The	Mattress testing results	Temperature Population Microclimate Risk Factor	2	4	3	·	surface testing and reporting: A national pressure ulcer advisory panel executive
protocols were designed to measure immersion	Multidisciplinary team members also	Peak Relative Humidity (%)	3	1	4		summary. Journal of Wound Ostomy Continence Nursing, 42(5), 445-449
and microclimate (Stone et al., 2015). A British standard protocol for measuring sliding	evaluated and rated the importance of select features of the mattresses and bed frames (i.e.	Humidity Population Microclimate Risk Factor	4	2	3	· · · · · · · · · · · · · · · · · · ·	Continence Muising, 42(3), 443-443
resistance was also published and available for	weight accommodation, safety features, etc.).	Total	29	22	38		
testing.		Note: Mattress B outperformed the oth lowest cumulative score.	her mattresses a	as demonstrate	ed by the	Call, 2017	

Model the Effect of Care on Elements of Risk

Using Test Results, Literature and Expert Opinion

- Determine the positive or negative impact of Devices and Practices -Direction-
- Measure where possible Magnitude-
- Estimate where not possible Magnitude-

Construct a Mathematical Model

- Predict impact of devices and practices
- Test Predictions

Include Influence of Care Practices

In depth interview with 5 nurses from 5 Care settings

- Boosting
- Turning Program,
- Use of draw sheets and positioners
- Positioning
- Early Mobility
- Micro turns

Include Influence of Care Practices

- Heel Elevation
- HOB Restrictions
- Skin Care Products
- Protectants
- Moisturizers
- Prophylactic Dressings

Literature as Input

 Element	Reference
Impact of	Oberg T, Domek M, Call E. Effect of Heat on Epithelial Cell Viability.
Temperature	Abstracts, Intermountain Branch Meeting, ASM 2010, Brigham Young
	University, Provo, Utah.
	Lachenbruch C. Skin Cooling Surfaces: Estimating the Importance of
	Limiting Skin Temperature. Ostomy/Wound Management
	2005:51(2):70-79.
	Kokate J, Leland K, Held A, Hansen G, Kveen G, Johnson B, Wilke M,
	Sparrow E. Iaizzo S. Temperature-Modulated Pressure Ulcers: A Porcine
	Model. Archives of Physical Medicine and Rehabilitation. 1995 Vol. 76, pgs
	666-673.
Sheets and layers	Williamson, R, Lachenbruch, C, VanGilder, C, Sauser, F. The effect of Multiple
on the Surface	layers of Linens on Surface Interface Pressure: Results of a Laboratory Study
	Ostomy Wound Management. Jue 2013 pgs 38-47
Tissue Deformation	Brienza, D, Karg, P, Lin, JW, Xue, Y. Task: S-2 Distortion Measureemnt and
	Biomechanical Analysis of In Vivo Loae Bearing Soft Tissues RERC on
	Wheelchair Technology Final Report: 1993-1998
	Gawlitta, D, Li, W, Oomens, C, Baaijens, F, Bader, D.
	The Relative Contributions of Compression and Hypoxia to Development of
	Muscle Tissue Damage: an Invitro Study
	Annals of Biomedical Engineering, Vol 35, No. 2, Feb 2007, pp 273-284
	Shoham, N, Gefen, A. Deformations, mechanical strains and stresses across
	the different hierarchial scales in weight-bearing soft tissues. Journal of
	Tissue Viability (2012) 21,39-46

Support Surface Population Risk Factor

- For a given set of care practices and patient conditions
- A score is generated.
- Low is better

Description	HPMRF	TPMRF	
LAL 1	5.0	2.7	
LAL 2	12.5	2.7	
LAL and AP	7.7	2.9	
AP	5.1	2.8	
Air	5.4	2.7	
Foam	4.7	2.7	
Visco Foam 1	10.6	3.2	
Visco Foam 2	15.3	2.8	
			5

Final Ranking Considering all Test Results and Care Practices

	Foam 7.5 8 8 5 5 8	Foam and Air 7.5 7 7 6 2	AP 5 5 3 7	LAL 6 6 5 8	LAL 1 1 6 1	Foam 3.5 2 2	LAL 2 3 1	Powered Air 3.5 4 4	
Vlax Temp (°C) Femp Diff (°C) Vlax RH (%) RH Diff (%) EvapCap fgm^2/hr)	8 8 5	7 7 6	5 3 7	6 5	1 6	2	3	4	
Max RH (%) RH Diff (%) EvapCap gm^2/hr)	8 5	7 6	3 7	5	6				
RH Diff (%) EvapCap /gm^2/hr)	5	6	7			2	1	1	
EvapCap /gm^2/hr)				8	1		_	4	
/gm^2/hr)	8	2			T	2	3	4	
ጋ dry (W/m^2)			6	7	3	5	1	4	
	3	1	6	8	2	7	5	4	
mmersion (mm)	8	3	5	4	2	7	1	6	
Peak Temp (°C)	3	2	1	4	7	7	5	7	
TPMRF	6	8	5	7	3	1	2	4	
Peak RH (%)	8	6	3	5	7	2	1	4	
HPMRF	8	6	3	5	7	1	2	4	
Over all Rank, Low score is									
pest	72.5	55.5	49	65	40	39.5	26	6 48.5	

2022 Annual Conference Technology in Wound Care

the Advanceme

References

National Pressure Ulcer Advisory Panel and European Pressure Ulcer Advisory Panel. 2009. Prevention and treatment of pressure ulcers: clinical practice guideline. National Pressure Ulcer Advisory Panel

National Pressure Ulcer Advisory Panel Support Surface Standards Initiative TIG048A-Ss Features and Physiology, 15 Aug 2009 Washington DC

Kokate JY, Leland Kj, Held AM, Hansen GL, Kveen GL, Johnson BA, Wilke MS, Sparrow EM, Jaizzo PA. Temperature-modulated pressure ulcers: A porcine model. Arch Phys Med Rehabil. 1995;76(7):666–73. [PMID: 7605187] DOI:10.1016/S0003-9993(95)80637-7

Arrhenius, S. [On the rate of reaction of the inversion of sucrose by acids]. Zeitschrift fuer physikalische Chemie. 1889;4:226–48. German.

National Health Statistics Reports Number 122 December 20, 2018 Mean Body Weight, Height, Waist Circumference, and Body Mass Index Among Adults: United States, 1999–2000 Through 2015–2016 by Cheryl D. Fryar, M.S.P.H., Deanna Kruszon-Moran, Sc.M., Qiuping Gu, M.D., and Cynthia L. Ogden, Ph.D. U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Centers for Disease Control and Prevention National Center for Health Statistics 🛛

Iaizzo PA, Kveen GL, Kokate JY, Leland KH, Hansen GL, Sparrow EM, Prevention of Pressure Ulcers by Focal Cooling: Histological Assessment in a Porcine Model. Wounds: A Compendiium of Clinical Research and Practice. 1995; 7(5)161-169

Fader M, Bain D, Cottenden A. Effects of absorbent incontinence pads on pressure management mattresses. Journal of Advanced Nursing, 48(6):569-574.

Patel S., Knapp C. F., Donofrio J. C., Salcido R. Temperature Effects on Surface Pressure-Induced Changes in Rat Skin Perfusion: Implications in Pressure Ulcer Development. Journal of Rehabilitation Research and Development. 1999:36(3). Landis, E. M. (1930). Micro-Injection Studies of Capillary Blood Pressure in Human Skin. Heart 15: 209 – 228, 1930

American National Standards Institute, Inc. Requirements and Test Methods for Full Body Support Surfaces. Jan 2019.

Contact:

Evan Call

- ecall@weber.edu
- 801-296-0451

